
Google Summer of Code Project with LLVM by

Anubhab Ghosh
Indian Institute of Information Technology, Kalyani, India

Mentors: Lang Hames, Vassil Vassilev, Stefan Gränitz

https://compiler-research.org

Efficient JIT-based remote 
execution

http://compiler-research.org


Code models

-mcmodel=small

0000000000000000 <main>:
 0: 55              push rbp
 1: 48 89 e5        mov  rbp,rsp
 4: b8 00 00 00 00  mov  eax,0x0

 9: e8 00 00 00 00  call e <main+0xe>
 a: R_X86_64_PLT32  func-0x4

 e: 5d              pop  rbp
 f: c3              ret

-mcmodel=large

0000000000000000 <main>:
 0: 55                 push rbp
 1: 48 89 e5           mov rbp,rsp
 4: b8 00 00 00 00     mov eax,0x0
 9: 48 ba 00 00 00 00  movabs rdx,0x0
 f: 00 00 00 00
 b: R_X86_64_64        func
13: ff d2              call rdx
15: 5d                 pop rbp
16: c3                 ret

From the GCC man page for x86_64:

● -mcmodel=small
○ Generate code for the small code model: the program and its symbols must be linked in the lower 2 GB of the address 

space.  Pointers are 64 bits.  Programs can be statically or dynamically linked.  This is the default code model.
● -mcmodel=large

○ Generate code for the large model.  This model makes no assumptions about addresses and sizes of sections.



Shared Memory

● LLVM JIT supports running the generated code in a separate process.
○ The RPC scheme Executor Process Control (EPC) is used for communication with the target.

● Communication happens through file descriptors backed by pipes or sockets.
○ This includes all the generated code as well.

● Shared memory allows us to communicate directly with the executor process.
○ Physical memory pages are mapped into both processes.
○ We can write directly to the address space of the executor process avoiding copies. It can 

save a lot of overhead when moving large data structures like in case of Clang REPL.
○ A syscall is still required to signal events like finalization.
○ Only works when executor is running on top of the same underlying physical memory.



MemoryMappers

● MemoryMapper: an interface to map and 
unmap memory in the executor process 
with protections

○ Makes it easy to swap out the code 
transport mechanism

● InProcessMapper: Implementation 
directly using sys::Memory APIs

○ Manages memory when running in the 
same process

● SharedMemoryMapper: The primary 
shared memory implementation

○ Has POSIX and win32 shared memory 
support

○ Executor side implemented in 
SharedMemoryMappperService class

Implementations of this 
interface can be used by the 

Mapper 
JITLinkMemoryManager 

class



Slab-Based Memory Allocator

● This class implements the JITLinkMemoryManager interface.
● It accepts a MemoryMapper and uses it for underlying memory management.
● It reserve()s a large chunk of memory on first allocate() and returns 

smaller areas from that.
○ The chunk is already mapped in the address space so allocate() is almost free.
○ It avoids some overhead of going through EPC and repeatedly calling mmap().
○ As the whole chunk is contiguous, this provides compatibility with small memory model on 

most architectures.
● Freed blocks are also returned to the available memory pool for reuse.



● It is already integrated in llvm-jitlink tool 
with both in-process and shared memory 
use case.

● MapperJITLinkMemoryManager :: 
CreateWithMapper() allows supplying 
a MemoryMapper.

● The SharedMemoryMapper requires 
ExecutorSharedMemoryMapperService to 
be enabled in the executor process.

● Creating a shared memory mappers 
requires a bit more set-up with the 
symbols of the service for RPC.

How to use?



● It is already integrated in llvm-jitlink tool with both in-process and shared memory 
use case.

○ Look for createInProcessMapper() and createSharedMemoryMapper() in 
llvm/tools/llvm-jitlink/llvm-jitlink.cpp for an example.

● MapperJITLinkMemoryManager::CreateWithMapper() allows supplying a 
MemoryMapper.

● The SharedMemoryMapper requires ExecutorSharedMemoryMapperService 
to be enabled in the executor process.

● Creating a shared memory mappers requires a bit more set-up with the symbols of 
the service for RPC.

How to use?



Thank You

Contact me at

● anubhabghosh.me@gmail.com
● LLVM Discord at argentite#0791
● Github @argentite
● LinkedIN: anubhab-ghosh-44b451194

GSoC Work Product with more details: 
https://gist.github.com/argentite/b265db7604a5ba3c487
83c42cefc6908

More interesting projects: https://compiler-research.org

Better explanation of code models: 
https://eli.thegreenplace.net/2012/01/03/understanding-t
he-x64-code-models

mailto:anubhabghosh.me@gmail.com
http://github.com/argentite
http://www.linkedin.com/in/anubhab-ghosh-44b451194
http://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908
http://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908
http://compiler-research.org
http://eli.thegreenplace.net/2012/01/03/understanding-the-x64-code-models
http://eli.thegreenplace.net/2012/01/03/understanding-the-x64-code-models

