Efficient JIT-based remote
execution

Google Summer of Code Project with LLVM by

Anubhab Ghosh
Indian Institute of Information Technology, Kalyani, India

Mentors: Lang Hames, Vassil Vassilev, Stefan Granitz

https://compiler-research.org

http://compiler-research.org

Code models

From the GCC man page for x86_64:

-mcmodel=small
o Generate code for the small code model: the program and its symbols must be linked in the lower 2 GB of the address

space. Pointers are 64 bits. Programs can be statically or dynamically linked. This is the default code model.
-mcmodel=large
o Generate code for the large model. This model makes no assumptions about addresses and sizes of sections.

-mcmodel=small

0000000000000000 <main>:

0:

1:
4:

9:
a:

55
48 89 ed5
b8 00 00 00 00

e8 00 00 00 00
R_X86_64_PLT32

: 5d
. c3

push
mov
mov

call e <main+0Oxe>
func -

pop
ret

rbp
rbp, rsp
eax, 0x0

0x4

rbp

-mcmodel=1large

0000000000000000 <main>:

0: 55

1: 48 89 e5

4: b8 00 00 6O 0O

9: 48 ba 00 00 00 00
f: 00 00 00 0O

b

: R_X86_64_64
13: ff d2
15: 5d
16: c3

push rbp

mov rbp, rsp
mov eax, 0x0
movabs rdx,0x0

func
call rdx
pop rbp
ret

Shared Memory

e LLVM JIT supports running the generated code in a separate process.
o The RPC scheme Executor Process Control (EPC) is used for communication with the target.

e Communication happens through file descriptors backed by pipes or sockets.
o This includes all the generated code as well.

e Shared memory allows us to communicate directly with the executor process.
o Physical memory pages are mapped into both processes.
o We can write directly to the address space of the executor process avoiding copies. It can

save a lot of overhead when moving large data structures like in case of Clang REPL.

o Asyscall is still required to signal events like finalization.
o Only works when executor is running on top of the same underlying physical memory.

MemoryMappers

e MemoryMapper: an interface to map and
unmap memory in the executor process
with protections

o Makes it easy to swap out the code
transport mechanism

e InProcessMapper: Implementation
directly using sys::Memory APls

o Manages memory when running in the
same process

e SharedMemoryMapper: The primary
shared memory implementation

o Has POSIX and win32 shared memory
support

o Executor side implemented in
SharedMemoryMappperService class

struct AllocInfo {
struct SegInfo {
ExecutorAddrDiff Offset;
const char *WorkingMem;
size_t ContentSize;
size_t ZeroFillSize;

Implementations of this AllocGroup AG;
interface can be used by the ks
Mapper
JITLinkMemoryManager ExecutorAddr MappingBase;
class std::vector<SegInfo> Segments;

virtual
virtual
virtual

virtual

virtual

void
char
void

void

void

shared:: AllocActions Actions;
reserve(size_t NumBytes, OnReservedFunction OnReserved) = 0;
*prepare (ExecutorAddr Addr, size_t ContentSize) = 0;
initialize(AllocInfo &AI,
OnInitializedFunction OnInitialized)

8;
deinitialize(ArrayRef<ExecutorAddr> Allocations,
OnDeinitializedFunction OnDeInitialized) = 0;
release (ArrayRef<ExecutorAddr> Reservations,
OnReleasedFunction OnRelease) = 0O

Slab-Based Memory Allocator

e This class implements the JITLinkMemoryManager interface.
e [t accepts a MemoryMapper and uses it for underlying memory management.

e It reserve()s alarge chunk of memory on first allocate() and returns

smaller areas from that.
o The chunk is already mapped in the address space so allocate() is almost free.
o It avoids some overhead of going through EPC and repeatedly calling mmap ().
o As the whole chunk is contiguous, this provides compatibility with small memory model on
most architectures.

e Freed blocks are also returned to the available memory pool for reuse.

How to use?

It is already integrated in llvm-jitlink tool
with both in-process and shared memory
use case.
MapperJITLinkMemoryManager
CreateWithMapper () allows supplying
a MemoryMapper.

The SharedMemoryMapper requires
ExecutorSharedMemoryMapperService to
be enabled in the executor process.
Creating a shared memory mappers
requires a bit more set-up with the
symbols of the service for RPC.

static std::unique_ptr<JITLinkMemoryManager> createInProcessMemoryManager() {
return ExitOnErr(
MapperJITLinkMemoryManager :: CreateWithMapper<InProcessMemoryMappers(
SlabSize));
}

Expected<std::unique_ptr<jitlink:: JITLinkMemoryManager>>
createSharedMemoryManager (SimpleRemoteEPC &SREPC) {
// These RPC endpoints are used to talk to the ExecutorSharedMemoryMapper
// service
SharedMemoryMapper :: SymbolAddrs SAs;
if (auto Err = SREPC.getBootstrapSymbols(
{{SAs.Instance, rt::ExecutorSharedMemoryMapperServiceInstanceName},
{SAs.Reserve,
rt:: ExecutorSharedMemoryMapperServiceReservelirapperName},
{SAs.Initialize,
rt:: ExecutorSharedMemoryMapperServiceInitializeWrapperNamel},
{SAs.Deinitialize,
rt::ExecutorSharedMemoryMapperServiceDeinitializeWrapperNamel},
{SAs.Release,
rt:: ExecutorSharedMemoryMapperServiceReleaseWirapperName}}))

return std::move(Err);

return MapperJITLinkMemoryManager ::CreateWithMapper<SharedMemoryMapper>(
SlabSize, SREPC, SAs);

How to use?

e |[tis already integrated in llvm-jitlink tool with both in-process and shared memory
use case.

o Look for createInProcessMapper () and createSharedMemoryMapper() in
1lvm/tools/1lvm-jitlink/11lvm-jitlink.cpp for an example.

e MapperJITLinkMemoryManager : :CreateWithMapper () allows supplying a
MemoryMapper.

e The SharedMemoryMapper requires ExecutorSharedMemoryMapperService
to be enabled in the executor process.

e Creating a shared memory mappers requires a bit more set-up with the symbols of
the service for RPC.

Thank You

Contact me at

anubhabghosh.me@gmail.com
LLVM Discord at argentite#0791

Github @argentite
LinkedIN: anubhab-ghosh-44b451194

GSoC Work Product with more details:
https://gist.github.com/argentite/b265db7604a5ba3c487
83c42cefc6908

More interesting projects: https://compiler-research.org

Better explanation of code models:
https://eli.theqgreenplace.net/2012/01/03/understanding-t
he-x64-code-models

mailto:anubhabghosh.me@gmail.com
http://github.com/argentite
http://www.linkedin.com/in/anubhab-ghosh-44b451194
http://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908
http://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908
http://compiler-research.org
http://eli.thegreenplace.net/2012/01/03/understanding-the-x64-code-models
http://eli.thegreenplace.net/2012/01/03/understanding-the-x64-code-models

